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Abstract

We propose the first unified theoretical analysis of mixed sample data augmentation
(MSDA), such as Mixup and CutMix. Our theoretical results show that regardless
of the choice of the mixing strategy, MSDA behaves as a pixel-level regularization
of the underlying training loss and a regularization of the first layer parameters.
Similarly, our theoretical results support that the MSDA training strategy can
improve adversarial robustness and generalization compared to the vanilla training
strategy. Using the theoretical results, we provide a high-level understanding of
how different design choices of MSDA work differently. For example, we show
that the most popular MSDA methods, Mixup and CutMix, behave differently, e.g.,
CutMix regularizes the input gradients by pixel distances, while Mixup regularizes
the input gradients regardless of pixel distances. Our theoretical results also show
that the optimal MSDA strategy depends on tasks, datasets, or model parameters.
From these observations, we propose generalized MSDAs, a Hybrid version of
Mixup and CutMix (HMix) and Gaussian Mixup (GMix), simple extensions of
Mixup and CutMix. Our implementation can leverage the advantages of Mixup
and CutMix, while our implementation is very efficient, and the computation cost
is almost neglectable as Mixup and CutMix. Our empirical study shows that
our HMix and GMix outperform the previous state-of-the-art MSDA methods
in CIFAR-100 and ImageNet classification tasks. Source code is available at
https://github.com/naver-ai/hmix-gmix.

1 Introduction

As deep neural networks (DNNs) are data-hungry, the scale of datasets has become a foundation of
modern DNN training; recent ground-breaking deep models are built upon gigantic datasets, such as
410B language tokens [6], 3.5B images [47], and 1.8B image-text pairs [33]. While such tremendously
large-scale datasets are not always collectible, amplifying the dataset scale by synthesizing more data
points by data augmentation techniques is common. Especially, mixed sample data augmentation
(MSDA) [3, 11, 14, 16, 18, 23, 25, 30, 32, 32, 38, 39, 44, 45, 54, 57, 59, 61, 62, 64, 65, 67, 70,
72, 74] has become a standard technique to train a strong deep model by synthesizing a mixed
sample from multiple (usually two) samples by combining both of their sample values and labels
in a linear combination [74] or a cut-and-paste manner [70]. This simple idea, however, shows
surprising performance enhancements in various applications, including image object recognition
[16, 25, 39, 63, 70], semi-supervised learning [4, 58] self-supervised learning [35, 40, 42], noisy label
training [43], meta-learning [69], semantic segmentation [10, 20], natural language understanding
[24, 34], and audio processing [37, 48, 49]. Another advantage of MSDA beyond the performance
improvements is that MSDA usually does not need domain-specific knowledge, such as strong
image-specific [15] or audio-specific [53] transformations; hence MSDA can be universally employed
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by various applications. However, although MSDA shows excellent benefits in practice, there is still
yet not enough understanding of how MSDA works well universally; can MSDA always show better
generalization and robustness than the standard training with a theoretical guarantee? Furthermore,
the design choice of MSDA can be significantly varying and the optimal design choice is still
ambiguous. For example, Lee et al. [42] showed that in self-supervised learning, Mixup is more
effective than CutMix, while Ren et al. [56] observed opposite results. The ambiguity is originated
from the fact that we do not have a unified theoretical lens of understanding how different design
choices affect the actual learning process; in short, how are Mixup and CutMix different?

There have been several attempts to theoretically understand Mixup, a special case of MSDA
[8, 12, 75, 76]. They delve into the effect of Mixup in a loss function perspective, e.g., Mixup behaves
as a regularization of the standard training [75], or in a learning theory perspective, e.g., Mixup
training can provide an upper bound for the true loss [12, 69]. However, their analyses are limited to
Mixup, while other MSDAs, such as CutMix, are poorly understandable through the lens of their
analyses. In this paper, we extend the theoretical results of Zhang et al. [75] and Chidambaram et
al. [12] to a general MSDA to provide a first unified theoretical lens for understanding how general
MSDAs work by different choices of mixing strategies. We show that MSDA behaves as an input
gradient and Hessian regularization (Theorem 1) as well as a regularizer for the first layer parameters;
MSDA improves adversarial robustness (Theorem 3) and generalization (Theorem 4). Our theoretical
results show that popular MSDA methods, such as Mixup and CutMix, behave differently in terms
of regularization effects. Briefly, CutMix gives a strong regularization in the product of nearby
distance pixel-level partial gradient and nearby distance Hessian of the estimated function f , while
CutMix gives a weak regularization in the product of long-distance pixel-level partial gradient and
long-distance Hessian of the estimated function f . In contrast, Mixup gives a regularization in
gradient or Hessian of the estimated function f regardless of the pixel-level distance.

From our unified theoretical lens for MSDA, we can conclude that there is no one-fit-all optimal
MSDA fit to every data or model parameter. In other words, the optimal mixing strategy depends
on applications, datasets, and model architectures. It supports previous empirical observations that
combining different MSDA methods (e.g., alternatively using Mixup and CutMix during training)
can outperform using only one MSDA [5, 50, 63, 71]. From these observations, we propose two
simple MSDA methods that naturally generalize Mixup and CutMix, so that it can take advantage of
both methods. Our first proposed method, Hybrid version of Mixup and CutMix (HMix), mixes two
samples in both Mixup and CutMix manners; it first cut-and-paste two samples as CutMix, and then
it linearly interpolates the out-of-box values of two samples as Mixup. We let HMix be able to behave
as both Mixup and CutMix by introducing a stochastic control parameter. Our second proposed
method, Gaussian Mixup (GMix), also mixes two samples in both Mixup and Cutmix manners; firstly
we select a point, and then we mix two samples gradually using the Gaussian function. Our empirical
results on CIFAR-100 and ImageNet show that HMix and GMix outperform the state-of-the-art
MSDA methods, including Mixup, CutMix, and Stochastic Mixup & CutMix.

2 A General Framework for Mixed Sample Data Augmentation (MSDA)

In this section, we define the formal definition of MSDA and notations. We define a training dataset
as D = {zi = (xi, yi)}mi=1, randomly sampled from a distribution Pz . Here, z = (x, y) is the input
(e.g., an image) and output (e.g., the target class label) pair. Then, for randomly selected two data
samples, zi and zj , an augmented sample by MSDA, z̃(MSDA)

i,j , is synthesized as follows

z̃
(MSDA)
i,j (λ,1− λ) = (x̃

(MSDA)
i,j (λ, 1− λ), ỹ

(MSDA)
i,j (λ, 1− λ))

where, x̃
(MSDA)
i,j (λ, 1− λ) = M(λ)� xi + (1−M(λ))� xj and

ỹ
(MSDA)
i,j (λ, 1− λ) = N(λ)� yi + (1−N(λ))� yj ,

(1)

where λ is the ratio parameter between samples, drawn from Dλ (usually Beta distribution). � means
a component-wise multiplication in vector (or matrix). M(λ) is a random variable conditioned on
λ that indicates how we mix the input (e.g., by linear interpolation [74] or by a pixel mask [70]).
N(λ) denotes a random variable conditioned on λ that demonstrates how we combine the output. We
assume that the output y can be one-dimensional data or a matrix; the former means regression or
classification task, and the latter means semantic segmentation task. For the sake of simplicity, we let
y be one-dimensional data: N(λ) = λ and E[M(λ)] = λ~1.
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Remark 1. If the meaning is not ambiguous, then we sometimes omit λ (i.e., M(λ) to M ). For
the sake of simplicity, we consider mixing only two samples (i.e., z̃(MSDA)

i,j (λ, 1 − λ)), but we can
similarly extend these analyses to mixing n-samples data augmentation [23, 32, 59]. If we combine
n-samples, the ratio parameter will be a vector in general (See Appendix B).

Remark 2. As recent studies [38, 39, 67] have shown, M(λ) or N(λ) can depend on (zi, zj), e.g.,
by using a saliency map [38, 39] or the class activation map [67]. Since the proof techniques for our
theoretical analysis are invariant to the choice of M(λ) and N(λ), our proof techniques also can be
applied to the dynamic MSDA methods. For simplicity, we assume that M is a random variable only
depending on λ. In other words, we assumeW as a random sample space, and M :W × Λ→ Rn is
a measurable function. We left the theoretical analysis of dynamic methods to the future.

Now, we re-write the two most popular MSDA methods, Mixup [74] and CutMix [70], for i-th and
j-th samples with λ, drawn from Dλ, by using the proposed framework (Equation (1)) as follows:

Mixup: z̃
(mixup)
i,j (λ, 1− λ) = (x̃

(mixup)
i,j (λ, 1− λ), ỹ

(mixup)
i,j (λ, 1− λ))

where x̃
(mixup)
i,j (λ, 1− λ) = λxi + (1− λ)xj and

ỹ
(mixup)
i,j (λ, 1− λ) = λyi + (1− λ)yj .

(2)

CutMix: z̃
(cutmix)
i,j (λ, 1− λ) = (x̃

(cutmix)
i,j (M, 1−M), ỹ

(cutmix)
i,j (λ, 1− λ))

where x̃
(cutmix)
i,j (M̃ (cutmix), 1− M̃ (cutmix)) = M̃ (cutmix) � xi + (1− M̃ (cutmix))� xj

and ỹ
(cutmix)
i,j (λ, 1− λ) = λyi + (1− λ)yj .

(3)

Note that Equation (2) is equivalent to Equation (1) by puttingM(λ) = λ~1. In Equation (3), M̃ (cutmix)

is a binary mask that indicates the location of the cropped box region with a relative area λ. Similarly,
other MSDA variants can be easily formed as Equation (1) by introducing new M(λ) and N(λ).

Notations. We define the loss function as l(θ, z), where θ ∈ Θ ⊆ Rd. We define L(θ) =
Ez∼Pz l(θ, z) as the non-augmented population loss and Lm(θ) = 1

m

∑m
i=1 l(θ, zi) as the empirical

loss for the non-augmented population. For a general MSDA, we can define MSDA loss as

LMSDA
m (θ) = Ei,j∼Unif([m])Eλ∼DλEM l(θ, z̃

(MSDA)
i,j (λ, 1− λ)). (4)

Therefore, the Mixup and CutMix losses can be written as

Lmixup
m (θ) =

1

m2

m∑
i,j=1

Eλ∼Dλ l(θ, z̃
(mixup)
i,j (λ, 1− λ)) (5)

Lcutmix
m (θ) =

1

m2

m∑
i,j=1

Eλ∼DλEM l(θ, z̃
(cutmix)
i,j (λ, 1− λ)),

where [m] = {1, 2, . . . ,m} and Dλ is a distribution supported on [0, 1] with a conjugate prior.
Throughout this paper, we consider Dλ as Beta(α, β), a common selection for λ in practice. We
define DX as the empirical distribution of the training dataset.

3 A Unified Theoretical Understanding of MSDA

In this section, we provide a unified theoretical lens of how MSDA works. Specifically, we follow
the theoretical results for Mixup provided by Zhang et al. [75], where Zhang et al. have shown
that Mixup is equivalent to the summation of the original loss function and a Mixup-originated
regularization term. We will give a general approximation form for MSDA using λ ∼ Beta(α, β).
We also show that our analysis can be extended to n-sample mixed augmentation (See Appendix B)
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From an MSDA loss to an input gradient and Hessian regularization. We first consider the
following class of loss functions for a twice differentiable prediction function fθ(x) (e.g., a softmax
output of a neural network), a twice differentiable function h, and target y:

L = {l(θ, z) | l(θ, z) = h(fθ(x))− yfθ(x) for a twice differentiable function h}.
This function class L includes the loss function induced by Generalized Linear Models (GLMs)
and cross-entropy. Now, we introduce our first theoretical result that induces an MSDA loss (i.e.,
Equation (4)) can be re-written as the summation of the original loss (the empirical loss for the
non-augmented population loss, Lm(θ)) and input gradient-related regularization terms as follows.

Theorem 1. Consider a loss function l ∈ L. We define D̃λ as α
α+βBeta(α+ 1, β) + β

α+βBeta(β +

1, α). Assume that Erx∼DX [rx] = 0. Then, we can re-write the general MSDA loss (4) as

LMSDA
m (θ) = Lm(θ) +

3∑
i=1

R(MSDA)
i (θ) + Eλ∼D̃(λ)EM [(1−M)ᵀϕ(1−M)(1−M)], (6)

where lima→0 ϕ(a) = 0,

R(MSDA)
1 (θ) =

1

m

m∑
i=1

(yi − h′(fθ(xi))) (∇fθ(xi)ᵀxi)Eλ∼D̃λ(1− λ),

R(MSDA)
2 (θ) =

1

2m

m∑
i=1

h′′(fθ(xi))Eλ∼D̃λG(DX , xi, f,M),

R(MSDA)
3 (θ) =

1

2m

m∑
i=1

(h′(fθ(xi))− yi)Eλ∼D̃λH(DX , xi, f,M),

(7)

and
G(DX ,xi, f,M) = EM (1−M)ᵀErx∼DX (∇f(xi)� (rx − xi) (∇f(xi)� (rx − xi))ᵀ) (1−M)

=
∑

j,k∈coord

ajk∂jfθ(xi)∂kfθ(xi) (Erx∼DX [rxjrxk] + xijxik) ,

H(DX ,xi, f,M) = Erx∼DXEM (1−M)ᵀ
(
∇2fθ(xi)� ((rx − xi)(rx − xi)ᵀ)

)
(1−M)

=
∑

j,k∈coord

ajk
(
Erx∼DX [rxjrxk∂

2
jkfθ(xi)] + xijxik∂

2
jkfθ(xi)

)
,

(8)

where

ajk := EM [(1−Mj)(1−Mk)]. (9)

Proof outline of Theorem 1. Using the definition of z̃ij and using the fact that the Binomial distri-
bution and Beta distribution are in the conjugate, we can reformulate L(MSDA)

m . In the process of
reformulating L(MSDA)

m , we should define D̃λ. Then, we can make a quadratic Taylor approximation
of the loss term. Here, Erx [rx] = 0 is used for not only the simplicity of the results, but also for the
fact that using normalization in the dataset. Details can be found in Appendix A. We also show that
Theorem 1 can be extended to n-sample MSDA methods (Appendix B). In this case, the combinatorial
terms in quadratic multivariate Taylor approximation also come out.

How is our approximation accurate? We call L̃MSDA
m (θ) := Lm(θ) +

∑3
i=1R

(MSDA)
i as the

approximate MSDA loss. Here, we empirically demonstrate that our quadratic approximation is
almost accurate by following numerical validations in [8, 66, 75]. Specifically, we train logistic
regression models on two-moons dataset [7] in two ways: (1) by using the original MSDA loss
function (2) by using our approximated loss function. We employ two MSDA examples as below.

• The original Mixup i.e., λ ∼ Beta(1, 1) and M = λ~1

• Variants of CutMix i.e., λ ∼ Beta(1, 1) and M = (m1,m2) such that mi ∼ Bernoulli(λ).

Figure 1 displays the approximate loss function and the original loss function. According to empirical
findings, we can conclude that the original MSDA loss is fairly close to the approximate MSDA loss.
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0 200 400 600 800 1000
epoch

0.45

0.55

0.65

lo
ss

MSDA
Approximate MSDA

(b) CutMix

Figure 1: Comparison of the original MSDA loss with the approximate MSDA loss function.

Figure 2: The negativeM value results. the image is λ∗dog+(1−λ)∗cat where−0.75 ≤ λ ≤ 0.75

What makes the difference between various MSDA methods? In the theorem, as we define EM (1−
M) = 1 − λ, R(MSDA)

1 is the same for every MSDA method. Namely, the difference between
MSDA methods originated from R(MSDA)

2 and R(MSDA)
3 . Note that if we set M = λ~1, Theorem 1

indicates a Mixup loss (5), and the result is consistent with Zhang et al. [75]. In Equation (7) and
Equation (8), we observe thatR2 is related to the input gradient∇fθ(xi) andR3 is related to input
Hessian∇2fθ(xi) with mask-dependent coefficients ajk (9). In other words, different design choice
of MSDA (e.g., how to design M ) will lead to different magnitudes of regularization on the input
gradients and Hessians. Because the values of input gradients and Hessians are varying by datasets,
tasks and model architecture choices, we can conclude that the optimal choice of M is dependent on
the applications. We also describe how the other MSDA methods (e.g., dynamic MSDAs [38, 39, 64])
can be interpreted through the lens of our unified analysis in Appendix I.

In addition, to show that MSDA behaves as a regularization on input gradients and Hessians for
any desired ajk, we also show that there always exists a MSDA design choice M for any desired
regularization coefficient matrix A(λ) := (ajk(λ)) with the regular conditions.

Theorem 2. For the given λ, we assume A(λ)− (1− λ)2~1~1ᵀ is a nonnegative definite matrix. Then
we can construct a real-valued mask M that E(1−Mj)(1−Mk) = ajk for all j, k.

Proof. Setting M = 1−λ+ (A(λ)− (1−λ)2~1~1ᵀ)1/2Z where Z is normal distribution, the theorem
holds.

Note that, in the proof, M values are not bounded where typically we choose 0 ≤Mi ≤ 1. In other
words, the theorem holds if we allow mask values out of [0, 1]. To investigate the potentiality of
unbounded mask, we explore Mixup with unbounded masks in Figure 2. Although, allowing negative
values to M can be beneficial, we leave a new mask design with unbounded values as a future work.

Unfortunately, as the target loss function (6) is mingled with the choice of mask M , data sample xi,
and pixel-level function gradient, the optimal choice of mixing strategy M is not achievable in the
closed-form solution. Instead, Theorem 1 implies that there is no absolute superiority between the
design choice of MSDA, but it depends on datasets and the target tasks, as our empirical observation
is consistent with the theoretical interpretation. In Section 4, we will provide more examples of how
different M affects the actual coefficients ajk and the input gradients for better understanding.

Using the regularization term R(MSDA)
2 (7), we can also provide a theoretical connection between

MSDA methods and the notion of flatness where a more flat solution leads to better generalization in
applications [9, 19, 21, 31, 36]. Inspired by Ma et al. [46], we split the parameters by θ = (θ1, θ2),
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and then the neural network can be represented by the form fθ(x) = f̃θ2(θ1x). Therefore, we have

∇θ1 f̃θ2(θ1x) =
∂f

∂(θ1x)
xᵀ, ∇xf̃θ2(θ1x) = θᵀ1

∂f

∂(θ1x)
,

where ∂f
∂(θ1x) is the partial derivative of the first layer. Now, we have

((1−M)�∇f(x))ᵀx = tr(x((1−M)�∇f(x))ᵀ) = tr
(
x

(
θᵀ1

∂f

∂θ1x
� (1−M)

)ᵀ)
= tr

(
x

((
∂f

∂θ1x

)ᵀ

θ1 diag(1−M)

))
= tr

((
∇θ1 f̃θ2(θ1x)

)ᵀ
θ1 diag(1−M)

)
.

Note that the terms in G (8) can be re-written as follows∑
j,k∈coord

EM [(1−Mj)(1−Mk)]∂jfθ(xi)∂kfθ(xi)(xijxik) = E
[
(((1−M)�∇f(x))ᵀx)2

]
.

In other words, by minimizing the regularization termR(MSDA)
2 ,

∫
(θᵀ1∇θ1 f̃θ2)2, i.e., the regularization

effect of flatness at the interpolation solution can be minimized in a sample-wise weighted manner.
Therefore, the regularization termR(MSDA)

2 also can be interpreted as a regularization of the first layer
parameters and their partial derivative of f .

Robustness and generalization properties of MSDA. As a number of studies [46, 51, 52] have
shown that regularizing input gradient and Hessian will give better robustness and generalization
to the target network θ, it can be shown that MSDA also has adversarial robustness properties and
generalization properties based on Theorem 1. The full statement of Theorem 3 and Theorem 4 can
be found in Appendix C and Appendix D, respectively.

Theorem 3 (Informal). With the logistic loss function under the ReLU network, the approximate loss
function of MSDA is greater than the adversarial loss with the `2 attack of size ε

√
d.

Proof outline of Theorem 3. Defining adversarial loss function and using second order taylor expan-
sion, we can prove that adversarial loss is less than MSDA loss.

Theorem 4 (Informal). Under the GLM model and the regular conditions, and if we use MSDA in
training, we have

L(θ) ≤ L̃(MSDA)
m (θ) +

√
O (log(1/δ))

n

with probability at least 1− δ. This also holds for the MSE loss and a feature-level MSDA.

Proof outline of Theorem 4. MSDA regularization can be altered to the original empirical risk mini-
mization problem with a constrained function set, and calculating Radamacher complexity of this
function set gives the theorem.

In addition to Theorem 3 and Theorem 4, we can prove that the optimal solution of (4) can achieve a
perfect classifier (i.e., classifies every augmented sample x correctly) in the logistic classification
setting by following Chidambaram et al. [12]. The full statement are in Appendix E.

Summary. Our unified theoretical lens for MSDA shows that for any MSDA method formed as
Equation (4), the method satisfies that (1) it behaves as a regularizer of input gradients, Hessian,
and the first layer parameters (Theorem 1); (2) there exists a mask M for any desired regularization
coefficients ajk (Theorem 2) (3) it achieves better adversarial robustness (Theorem 3) and generaliza-
tion (Theorem 4) than the vanilla training. Interestingly, Theorem 1 shows the difference between
different MSDA design choices (e.g., different M , such as linear interpolation [74], cropped box
[70]) will lead to different magnitudes of the input gradient regularization (7).
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Original A Original B Mixup CutMix Hmix (ours) Gmix (ours)

Mixed Images

Mixing Masks

0.0

1.0

Figure 3: Examples generated by different MSDAs. From left to right, two original images to be mixed,
Mixup, CutMix sample, HMix, and GMix. The first and the second rows show generated samples and their
mixing masks M , respectively. We set λ = 0.65 for all images and r = 0.5 for HMix.

4 Comparison of Different MSDA Design Choices: The Role of Masks

As we observed in the previous section, different design choices for MSDA (i.e., the choice of
M ) affect to the degree of the regularization in Theorem 1 (i.e., R(MSDA)

2 and R(MSDA)
3 ) by the

relationships of pixels. In this section, we show how different MSDA methods lead to different
regularization effects by empirical studies; we first show the values of the regularization coefficients
ajk by varying masks; then we show the input gradient values that are regularized by ajk (9) after
the MSDA training; finally, we show that the best choice of the mask design can be varying by the
target task settings. In addition, we propose two generalized versions of Mixup and CutMix, called
HMix and GMix, that empirically show the intermediate property of Mixup and CutMix.

Introduction to HMix and GMix. Recall that the regularization coefficients ajk is determined by
M (Equation (9)). For example, by choosing M = λ~1 (i.e., Mixup), ajk is always (1− λ)2. On the
other hand, the result slightly changes for CutMix: ajk depends on how j and k are close. Informally,
due to dependency between Mj and Mk (as M ’s component is always 0 in the cropped box regions
and 1 in others), close j and k give large ajk, but distant j and k give small ajk. ajk is calculated as

ajk =
max(min(h(j1)− l(k1), h(k1)− l(j1)), 0) max(min(h(j2)− l(k2), h(k2)− l(j2)), 0)

(n− [
√

1− λn])2
(10)

where j = (j1, j2), k = (k1, k2), h(t) = min(t, n− [
√

1− λn]), l(t) = max(t− [
√

1− λn], 0).

We visualize ajk of different MSDA methods in Figure 4. We compare Mixup, CutMix, Stochastic
Mixup & CutMix. We also propose two generalized MSDA methods, named HMix and GMix.
Before comparing the methods, we first formally define Stochastic Mixup & CutMix, HMix and
GMix. These methods can be formed as (1) where the definition of M is varying by the methods.

Stochastic Mixup & CutMix is a practical variant of MSDA by considering Mixup and CutMix at the
same time. By a simple alternation of two augmentations, the state-of-the-art performances on large-
scale datasets are shown [63, 68]. Stochastic Mixup & CutMix is the same as Equation (1) by setting
M(λ) = (1 − λ)~1 with probability q and M(λ) = M cutmix(λ) with probability 1 − q. We choose
q = 0.5 as [63, 68]. In our loss function perspective, the regularizing coefficient terms (i.e.,R2,R3)
become the average of Mixup and CutMix’s regularization coefficient. Namely, let amixup

ij = (1− λ)2

be a regularization coefficient of Mixup and acutmix
ij be a regularization coefficient of CutMix (10),

then the regularization coefficients of Stochastic Mixup & CutMix is qacutmix
ij + (1− q)amixup

ij .

Here, we additionally propose two MSDA variants, HMix and GMix, that leverage the advantages of
Mixup and CutMix, resulting in showing the intermediate property between Mixup and CutMix.

Hybrid version of Mixup and CutMix (HMix) combines Mixup and CutMix by shrinking the CutMix
cropped box region and linearly interpolating two images in the areas out of the box as Mixup. The
shrinking ratio of the cropped box region is determined by the ratio r. HMix can be written as (1)
by setting M by (1) randomly cropped box region with side length

√
1− λ

√
rN where N is the

side length of the original image, and make M ’s component in the box region as 0 (2) in the areas
other than the box, we set Mi as λ

1−(1−λ)r . We can easily check that E[M ] = λ~1. As r → 0, this

7



0.0

0.5

Figure 4: Visualization of regularization coefficients for different MSDA methods. aij values of Mixup,
CutMix, Stochastic Mixup & CutMix (the alternation of Mixup and CutMix), HMix, GMix (described in
Section 4 and Appendix H) are shown. Each (x, y) value is computed by Eiai,i+(x,y) where i is a pixel vector.

method goes to Mixup, and as r → 1, this method goes to CutMix. Note that the ratio r can be a
random variable, such as Beta(γ, γ). In this case, if we set γ → 0, as Beta(γ, γ) goes to Bernoulli
distribution, this is equivalent to Stochastic Mixup & CutMix.

We propose Gaussian Mixup (GMix) to relax the CutMix box condition to a continuous version as
the rectangle cropping of CutMix causes implausible augmented data, e.g., the boundary between
two mixed samples. Therefore, we combine two ideas of Mixup and CutMix. Firstly, we select a
point p from the given input. Then, we make Mi as the related function with ‖i− p‖2. Specifically,
we use the Gaussian function for making M : (1) randomly select a point p in image (2) in the areas
other than the box, we set Mi as 1− exp

(
− ‖i−p‖

2π
2(1−λ)N2

)
. The proposed GMix has the following aij

aij =
1

N2

∑
p∈pixel

exp

(
−π

2(1− λ)N2

(
−‖i− p‖2 − ‖j − p‖2

))

=

∫
R2

exp

(
−π

2(1− λ)N2

(
−‖i− p‖2 − ‖j − p‖2

))
dx

= (1− λ) exp

(
−π

(1− λ)N2

∥∥∥∥ i− j2

∥∥∥∥2
)
. (11)

As seen in Equation (11), aij smoothly goes down when the pixel distance becomes larger.

Figure 3 shows the examples generated Mixup, CutMix, HMix, and GMix. The proposed methods
(HMix and GMix) generate images in a hybrid form with the properties of both Mixup and CutMix.

Comparison in terms of regularization coefficients ajk. We illustrate the regularization coeffi-
cients ajk of the different MSDA methods in Figure 4. In particular, we fix the mask parameter λ to
0.5 and the input resolution to 64 × 64. Figure 4 shows the difference between the MSDA methods
in terms of how they regularize the input gradients and input Hessians: Mixup has equal weights to
every gradient component or Hessian component, while CutMix gives high regularization in close
coordinate gradient products or Hessian. We also observe that the hybrid methods (e.g., Stochastic
Mixup & CutMix, HMix, and GMix) show the intermediate coefficient values of Mixup and CutMix.

Comparison in terms of the regularized input gradients after MSDA training. Equation (8)
shows that the regularization term aij directly affects to the pixel gradients |∂ifθ(xk)∂jfθ(xk)| in
our approximated loss function. The purpose of Figure 5 is to show how the pixel gradients are
actually regularized after training. We investigate the amount of the regularized input gradients by
|∂vfθ(x)∂v+pfθ(x)| with respect to the pixel distance vector p for trained models by different MSDA
methods. Here, if our approximated loss function actually behaves as a regularization, then we can
expect that the pixel gradients |∂vfθ(x)∂v+pfθ(x)| is small when aij is large for the given p.

We first define the partial gradient product as follows:

PartialGradProd(x, p) = max
v
|∂vfθ(x)∂v+pfθ(x)| (12)

Now, we visualize the pixel-wise maximum values of PartialGradProd(x, p) in Figure 5. We train
different models fθ on resized ImageNet (64 x 64) and measure the values on the validation dataset.
The x-axis and y-axis of Figure 5 denote the pixel distance p along each x and y axis, and the scale
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(a) Vanilla (no MSDA) (b) Mixup (c) CutMix

Figure 5: Regularized input gradients by MSDA. The normalized pixel-wise partial gradient norm product
comparison among the models trained with vanilla setting (a), Mixup (b) and CutMix (c). We plotted (12), and
x and y axis denote the pixel distance p along each axis.

Table 1: Different tasks need different MSDA strategies. Validation accuracies of Mixup and CutMix trained
networks on two different scenarios on ImageNet-100. Each scenario assumes different pixel importances.

Mixup CutMix ∆ (CutMix - Mixup)

Scenario 1: Large crop 58.3 64.4 +6.1
Scenario 2: Small crop 67.7 67.0 -0.7

of the colorbar denotes the value of the maximum partial gradient product. In the figure, we can
observe that CutMix reasonably regularizes effectively in the input gradients products when a pixel
distance is small; these results aligned with our previous interpretation, CutMix behaves a pixel-level
regularizer where it gives stronger regularization (larger aij) to the closer pixels. Note that we are
not discussing the relationship between regularizing effects and accuracy but discussing regularizing
coefficients and the optimized function’s pixel gradients.

Understanding application cases when a specific MSDA design choice works better than others.
From our theoretical results and empirical studies, we have shown that the design choice of MSDAs
(i.e., M ) leads to different regularization effects by regularization coefficient ajk. Furthermore, as we
have shown in Theorem 2, there always exists a mask that can form any desired ajk. We hypothesize
that for the given dataset, if a short distance relation is relatively more important than longer distance
relations, then CutMix will be better than Mixup. On the contrary, in the opposite case, if a short
distance relation is relatively less important, then Mixup will be better than CutMix.

Here, we study different task scenarios when different ajks are required by controlling the pixel-level
importance of ImageNet-100 [60] training images. In particular, we design two different scenarios
where each of them needs different regularization strategies due to the different pixel-level importance
of each task. The results are shown in Table 1. We also report the performance of our proposed
methods in both scenarios 1 and 2 in Appendix G.

Scenario 1: Smaller objects by large crop size. We randomly crop a large region (80% to 100%)
of an image and resize to 64 × 64 to train a model. As the objects in the image become small, a
close-distance relationship might be more important than a large-distance relationship. Here, we
expect CutMix performs better than Mixup as shown in Table 1.

Scenario 2: Larger objects by small crop size We randomly crop a small region (25% to 40%)
of an image and resize to 64× 64 to train a model. Contrary to Scenario 1, the objects in the image
would become large in the cropping region and the large-distance relationship might be important,
therefore, we expect that Mixup performs better than CutMix. This hypothesis is aligned to Table 1.

5 Comparison of Different MSDA Design Choices: An Empirical Validation

In this section, we compare various MSDA methods on two popular large-scale image classification
benchmarks: CIFAR-100 [41] and ImageNet-1K [17]. We will confirm that our proposed design
choices, HMix and GMix, are not only theoretically interpolating Mixup and CutMix in the toy

9



Table 2: CIFAR-100 classification. Comparison of various MSDA methods on various network architectures.
Note that PuzzleMix needs additional computations (twice than others) for computing the input saliency.

Augmentation Method RN56 WRN28-2 PreActRN18 PreActRN34 PreActRN50

Vanilla (no MDSA) 73.23 73.50 76.73 77.68 79.07
Mixup 73.12 74.05 77.21 79.02 79.34
CutMix 74.83 74.79 78.66 80.05 81.23
PuzzleMix - 76.51 79.38 80.89 82.46
Stochastic Mixup & CutMix 74.88 75.49 79.25 81.05 81.21

HMix (ours) 74.99 75.68 79.25 81.07 81.38
GMix (ours) 75.75 76.15 79.17 80.52 81.45

settings, but also taking benefits of each method by showing great performances in real-world
applications. The implementation details and the hyper-parameter study can be found in Appendix F.

Results on CIFAR-100 classification. We evaluate our method (HMix and GMix) against base-
line MSDA methods including Mixup [74], CutMix [70], Stochastic Mixup & CutMix, [63] and
PuzzleMix [39] on CIFAR-100 dataset. Here, we include PuzzleMix, to see the effectiveness of our
data-agnostic method against the data-aware mask strategy. Note that although our theoretical results
(Section 3) are based on the data-agnostic mask selection methods, our theoretical results can be
easily extended to the data-dependent mask selection methods. We leave the extension as a future
research direction.

To see the generalizability of our methods, we train various network architectures including
ResNet-56 (RN56) [26], WideResNet28-2 (WRN28-2) [73], PreActResNet-18 (PreActRN18) [27],
PreActResNet-34 (PreActRN34) [27] and PreActResNet-50 (PreActRN50) [27] with various MSDA
methods. We train networks for 300 epochs using SGD optimizer with a learning rate 0.2. Table 2
shows the summarized results. We set the hyper-parameter α for Mixup, CutMix, and Stochastic
Mixup & CutMix to 1. α for HMix and GMix were set to 1 and 0.5, respectively. We use r = 0.5
for HMix. In the table, HMix and GMix outperform Mixup only and CutMix only counterparts and
Stochastic Mixup & CutMix often show comparable performances to HMix and GMix. Our methods
show comparable performance with the state-of-the-art data-dependent strategy PuzzleMix.

Table 3: ImageNet-1K classification. Comparison of
various MSDA methods on ResNet-50 architecture.

Augmentation Method Top-1 accuracy

Vanilla (no MDSA) 75.68 (+0.00)
Mixup 77.78 (+2.10)
CutMix 78.04 (+2.36)
Stochastic Mixup & CutMix 78.13 (+2.45)

HMix (ours) 78.38 (+2.70)
GMix (ours) 78.13 (+2.45)

Results on ImageNet-1K classification. Ta-
ble 3 shows the comparison of various MSDA
methods on ImageNet-1K. We train ResNet-
50 [26] with various MSDA methods for 300
epochs using SGD optimizer with a learning
rate 0.1. We set the hyper-parameter α for all
methods except Mixup to 1, while Mixup has
α = 0.8. We use r = 0.75 for HMix. Here,
we do not include PuzzleMix because it needs
heavy additional computations to compute the
input saliencies. In the table, HMix shows the
best performance, while GMix and Stochastic Mixup & CutMix show the second-best performances.
Evaluations on various robustness benchmarks are in Appendix G.

6 Conclusion

We analyze MSDA by a unified theoretical framework. Our unified theoretical results show that any
MSDA method behaves as a regularization on the input gradients and Hessians, where the degree of
the regularization is controlled by the design choice of MSDA. We compare various MSDA methods
in (1) regularization coefficient (2) regularized gradients (3) model performances in various scenarios
with different pixel-level importance. We propose two simple MSDA methods, HMix and GMix,
which leverage the benefits of Mixup and CutMix by their design. Our experimental results show that
HMix and GMix outperform popular MSDA methods Mixup and CutMix. Furthermore, our methods
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show comparable or outperformed performances than the state-of-the-art MSDA method, Stochastic
Mixup & CutMix, in CIFAR-100 and ImageNet classification tasks.
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Appendix

We include additional materials in this document, including additional theoretical results (Appendix A,
B, C, D, E), experimental details (Appendix F), additional experiments (Appendix G), and additional
explanation for various MSDAs based on our analysis (Appendix H, I).

Negative Societal Impacts

Our work may help the situation that data is insufficient, as other data augmentation papers do. We
mainly proposed the theoretical aspect of MSDA, so there are no negative societal impacts.

A Proof of Theorem 1

For convenience, we restate Theorem 1.

Theorem 1. Consider a loss function l ∈ L. We define D̃λ as α
α+βBeta(α+1, β)+ β

α+βBeta(β+1, α).
Assume that Erx∼DX [rx] = 0. Then, we can re-write the general MSDA loss (4) as

LMSDA
m (θ) = Lm(θ) +

3∑
i=1

R(MSDA)
i (θ) + Eλ∼D̃(λ)EM [(1−M)ᵀϕ(1−M)(1−M)],

where lima→0 ϕ(a) = 0,

R(MSDA)
1 (θ) =

1

m

m∑
i=1

(h′(fθ(xi))− yi)Erx∼DX (∇fθ(xi)� (rx − xi))ᵀ Eλ∼D̃λEM (1−M)

=
1

m

m∑
i=1

(yi − h′(fθ(xi))) (∇fθ(xi)ᵀxi)Eλ∼D̃λ(1− λ),

R(MSDA)
2 (θ) =

1

2m

m∑
i=1

h′′(fθ(xi))Eλ∼D̃λG(DX , xi, f,M),

R(MSDA)
3 (θ) =

1

2m

m∑
i=1

(h′(fθ(xi))− yi)Eλ∼D̃λH(DX , xi, f,M),

and
G(DX ,xi, f,M) = EM (1−M)ᵀErx∼DX (∇f(xi)� (rx − xi) (∇f(xi)� (rx − xi))ᵀ) (1−M)

=
∑

j,k∈coord

ajk∂jfθ(xi)∂kfθ(xi) (Erx∼DX [rxjrxk] + xijxik) ,

H(DX ,xi, f,M) = Erx∼DXEM (1−M)ᵀ
(
∇2fθ(xi)� ((rx − xi)(rx − xi)ᵀ)

)
(1−M)

=
∑

j,k∈coord

ajk
(
Erx∼DX [rxjrxk∂

2
jkfθ(xi)] + xijxik∂

2
jkfθ(xi)

)
,

where

ajk := EM [(1−Mj)(1−Mk)].

Proof of Theorem 1. Due to the assumption of the theorem, we can rewrite the empirical loss for the
non-augmented population as

Lm(θ) =
1

m

m∑
i=1

l(θ, zi) =
1

m

n∑
i=1

[h(fθ(xi))− yifθ(xi)].

Similarly, we can rewrite the MSDA loss as

LMSDA
m (θ) =

1

m2

m∑
i,j=1

Eλ∼DλEM l(θ, z̃
(MSDA)
i,j (λ, 1− λ))

=
1

m2

m∑
i,j=1

Eλ∼Beta(α,β)EM [h(fθ(x̃
(MSDA)
i,j (M, 1−M)))− ỹ(MSDA)

i,j (λ, 1− λ)fθ(x̃
(MSDA)
i,j (M, 1−M))].
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Putting the definition of z̃(MSDA)
i,j (λ, 1− λ) to the equation above, we have

LMSDA
m (θ) =

1

m2

m∑
i,j=1

(
Eλ∼Beta(α,β)EM

(
λ(h(fθ(x̃

(MSDA)
i,j (M, 1−M)))− yifθ(x̃(MSDA)

i,j (λ, 1− λ)))

+ (1− λ)(h(fθ(x̃
(MSDA)
i,j (M, 1−M)))− yjfθ(x̃(MSDA)

i,j (M, 1−M)))

))

=
1

m2

m∑
i,j=1

(
Eλ∼Beta(α,β)EB∼Bin(λ)EM

(
B(h(fθ(x̃

(MSDA)
i,j (M, 1−M)))− yifθ(x̃(MSDA)

i,j (M, 1−M)))

+ (1−B)(h(fθ(x̃
(MSDA)
i,j (M, 1−M)))− yjfθ(x̃(MSDA)

i,j (M, 1−M)))

))
.

Note that λ ∼ Beta(α, β) and B|λ ∼ Bin(λ). By conjugacy, we can write the joint distribution of
(λ,B) as

B ∼ Bin
(

α

α+ β

)
, λ|B ∼ Beta(α+B, β + 1−B).

Therefore, we have

LMSDA
m (θ) =

1

m2

m∑
i,j=1

(
Eλ∼Beta(α+1,β)EM

α

α+ β
(h(fθ(x̃

(MSDA)
i,j (λ, 1− λ)))− yifθ(x̃(MSDA)

i,j (λ, 1− λ)))

+ Eλ∼Beta(α,β+1)EM
β

α+ β
(h(fθ(x̃

(MSDA)
i,j (λ, 1− λ)))− yjfθ(x̃(MSDA)

i,j (λ, 1− λ)))

)
=

1

m

n∑
i=1

Eλ∼D̃(λ)Erx∼DxEM [h (fθ(M � xi + (1−M)� rx))− yifθ(M � xi + (1−M)� rx)]

(13)

=
1

m

n∑
i=1

Eλ∼D̃(λ)Erx∼DxEM l(θ, ẑi), (14)

where ẑi = (M � xi + (1−M)� rx, yi).

Let N = 1 −M . By defining φi(N) = h (fθ(xi +N � (rx − xi))) − yifθ(xi + N � (rx − xi))
and applying Taylor expansion, we have

φi(N) = φi(0) +∇Nφi(0)ᵀN +
1

2
Nᵀ∇2

Nφi(0)N +Nᵀϕ(N)N, (15)

where limN→0 ϕ(N) = 0. Firstly, we calculate φi(0) by

φi(0) = h(fθ(xi))− yifθ(xi). (16)

Second, we calculate∇Nφi(0) by

∂φi(N)

∂Nk
= (h′ (fθ (xi +N � (rx − xi)))− yi)

∂fθ
∂xik

(xi +N � (rx − xi)) (rxk − xik),

where we denote Nk as the kth element of N , xik as the kth element of xi, and rxk as the kth element
of rx. Therefore, we have

∇Nφi(0)ᵀN = (h′(fθ(xi))− yi)
∑
k

(
∂fθ
∂xik

(xi)(rxk − xik)

)
Nk

= (h′(fθ(xi))− yi) (∇f � (rx − xi)) ·N. (17)

16



Finally, we calculate∇2
Nϕi(~0)T by

∂2φk(N)

∂Nk∂Nj
=

∂

∂Nj

(
(h′ (fθ (xi +N � (rx − xi)))− yi)

∂fθ
∂xik

(xi +N � (rx − xi)) (rxk − xik)

)
= h′′ (fθ (xi +N � (rx − xi)))

× ∂fθ
∂xik

(xi +N � (rx − xi)) (rxk − xik)
∂fθ
∂xij

(xi +N � (rx − xi)) (rxj − xij)

+ (h′ (fθ (xi +N � (rx − xi)))− yi)

× ∂2fθ
∂xik∂xij

(xi +N � (rx − xi)) (rxk − xik)(rxj − xij).

Therefore, we have

1

2
Nᵀ∇2

Nφi(0)N =
1

2
h′′ (fθ(xi))

∑
k,j

(
∂fθ
∂xik

(xi)(rxk − xik)
∂fθ
∂xij

(xi)(rxj − xij)NkNj
)

+
1

2
(h′ (fθ(xi))− yi)

∑
k,j

∂2fθ
∂xik∂xij

(xi) (rxk − xik)(rxj − xij)NkNj

=
1

2
h′′ (fθ(xi))N

ᵀ ((∇f � (rx − xi)) (∇f � (rx − xi))ᵀ)N

+
1

2
(h′ (fθ(xi))− yi)Nᵀ

(
∇2fθ(xi)� ((rx − xi)(rx − xi)ᵀ)

)
N. (18)

Applying (16) - (18) to (15),

φi(N) = (h(fθ(xi))− yifθ(xi)) + (h′(fθ(xi))− yi) (∇f � (rx − xi)) ·N

+
1

2
h′′ (fθ(xi))N

ᵀ ((∇f � (rx − xi)) (∇f � (rx − xi))ᵀ)N

+
1

2
(h′ (fθ(xi))− yi)Nᵀ

(
∇2fθ(xi)� ((rx − xi)(rx − xi)ᵀ)

)
N +Nᵀϕ(N)N (19)

Plugging (19) to (13), we conclude

LMSDA
m (θ) =

1

m

n∑
i=1

Eλ∼D̃(λ)Erx∼DxEMφ(1−M)

= Lm(θ) +R1(θ) +R2(θ) +R3(θ) + Eλ∼D̃(λ)EM [(1−M)ᵀϕ(1−M)M ],

where

R1(θ) =
1

m

m∑
i=1

(h′(fθ(xi))− yi) (∇fθ(xi)� Erx∼DX [rx − xi])Eλ∼D̃λEM (1−M),

R2(θ) =
1

2m

m∑
i=1

h′′(fθ(xi))Eλ∼D̃λEM (1−M)ᵀErx∼DX [∇f(xi)� (rx − xi) (∇f(xi)� (rx − xi))ᵀ] (1−M),

R3(θ) =
1

2m

m∑
i=1

Eλ∼D̃λEM (1−M)ᵀErx∼DX
[
∇2fθ(xi)� ((rx − xi)(rx − xi)ᵀ)

]
(1−M).
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B Extension of Mixup: n-Mixup

In this section, due to notational complexity, we give the approximate loss function of the n-sample
Mixup (n-Mixup). The same analysis can be applied to n-sample mixing strategy. We will define
n-Mixup as followings. Mixup from the i = (i1, i2, . . . , in)th samples with λλλ = (λ1, λ2, . . . , λn)
which is drawn from DΛ (mainly Dirichlet distribution), is defined as z̃i =

∑n
k=1 λkzik . Similarly,

we can define the n-Mixup loss as

Ln-mixup
m (θ) = Ei∼Unif([m])Eλλλ∼DΛ

l(θ, z̃i(λλλ)) =
1

mn

∑
i

Eλλλ∼DΛ
l(θ, z̃i(λλλ)).

Throughout this section, we consider DΛ as Dirichlet distribution (i.e. DΛ = Dir(ααα) =
Dir(α1, α2, . . . , αn)), which is the natural extension of Beta distribution.

Theorem 5. Consider the loss function in l ∈ L. Then, we can rewrite the n-Mixup loss as

Ln-mix
m (θ) =

1

m

n∑
k=1

Eλλλ∼D̃(Λ)Erx,2,··· ,rx,n∼Dxϕk(λ2, · · · , λn)

= Lm(θ) +R1(θ) +R2(θ) +R3(θ) + Eλλλ∼D̃(Λ)[o(‖(λ2, · · · , λn)‖2)],

where

R1(θ) =
Eλλλ∼D̃Λ

[1− λ1]

m

m∑
i=1

(h′(fθ(xi))− yi)∇fθ(xi)TErx∼DX [rx − xi],

R2(θ) =
Eλλλ∼D̃Λ

[
∑m
j=2 λ

2
j ]

2m

m∑
i=1

h′′(fθ(xi))∇fθ(xi)TErx∼DX [(rx − xi)(rx − xi)T ]∇θf(xi)

+
Eλλλ∼D̃Λ

[(1− λ1)2 −
∑m
j=2 λ

2
j ]

2m

m∑
i=1

h′′(fθ(xi))∇fθ(xi)TErx∼DX [(rx − xi)]Erx∼DX [(rx − xi)T ]∇θf(xi),

R3(θ) =
Eλλλ∼D̃Λ

[
∑m
j=2 λ

2
j ]

2m

m∑
i=1

(h′(fθ(xi))− yi)Erx∼DX [(rx − xi)∇2fθ(xi)(rx − xi)T ]

+
Eλλλ∼D̃Λ

[(1− λ1)2 −
∑m
j=2 λ

2
j ]

2m

m∑
i=1

(h′(fθ(xi))− yi)Erx∼DX [(rx − xi)]∇2fθ(xi)Erx∼DX [(rx − xi)T ].

As Mixup’s approximate loss function [75] or Theorem 1, n-Mixup also regularizes ∇f and∇2f .

Proof. Due to the assumption of the theorem, we can rewrite the empirical loss for the non-augmented
population as

Lm(θ) =
1

m

m∑
i=1

l(θ, zi) =
1

m

n∑
i=1

[h(fθ(xi))− yifθ(xi)].

Similarly, we can rewrite the n-Mixup loss as

Ln-mix
m (θ) =

1

mn

∑
i

Eλλλ∼DΛ
l(θ, z̃i(λλλ)) =

1

mn
Eλλλ∼Dir(ααα)

∑
i

[h(fθ(x̃i(λλλ)))− ỹi(λλλ)fθ(x̃i(λλλ))].

Putting the definition of x̃i and ỹi to the equation above, we have

Ln-mix
m (θ) =

1

mn
Eλλλ∼Dir(ααα)

∑
i

n∑
k=1

λk(h(fθ(x̃i(λλλ)))− ykfθ(x̃i(λλλ)))

=
1

mn

∑
i

Eλλλ∼Dir(ααα)Eβββ∼Mult(λλλ)

n∑
k=1

βk(h(fθ(x̃i(λλλ)))− ykfθ(x̃i(λλλ))),
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where βββ = (β1, β2, · · · , βn) and Mult(λλλ) is multinomial distribution. Note that λλλ ∼ Dir(ααα) and
βββ|λλλ ∼ Mult(λλλ). By conjugacy, we can write the joint distribution of (ααα,βββ) as

βββ ∼ Mult
(

ααα∑
αi

)
, λλλ|βββ ∼ Dir(ααα+ βββ).

Therefore,

Ln-mix
m (θ) =

1

mn

∑
i

n∑
k=1

αk∑
αi

Eλλλ∼Dir(α1,α2,...,αk+1,...,αn)(h(fθ(x̃i(λλλ)))− ykfθ(x̃i(λλλ)))

=
1

m

n∑
k=1

Eλλλ∼D̃(Λ)Erx,2,··· ,rx,n∼Dx

h
fθ

λ1xk +

n∑
j=2

λjrx,j

− ykfθ
λ1xk +

n∑
j=2

λjrx,j

 ,
(20)

where D̃Λ =
∑n
l=1

αl∑
αi

Dir(αl + 1, αl+1, . . . , αl+n−1) andDx is the empirical distribution induced
by training samples. We regard the index with mod n. Defining ϕk(·) as

ϕk(λ2, · · · , λn) = h

fθ
(1−

n∑
j=2

λj)xk +

n∑
j=2

λjrx,j

−ykfθ
(1−

n∑
j=2

λj)xk +

n∑
j=2

λjrx,j

 ,

we can use twice the differentiability of f(·) and h(·), so we have

ϕk(λ2, · · · , λn) = ϕk(~0) +∇ϕk(~0)T (λ2, · · · , λn) +
1

2
(λ2, · · · , λn)T∇2ϕk(~0)T (λ2, · · · , λn)T + o(‖(λ2, · · · , λn)‖2).

(21)

Firstly, we calculate ϕk(~0) by

ϕk(~0) = h(fθ(xk))− ykfθ(xk). (22)

Second, we calculate∇ϕk(~0) by

∂ϕk(λ2, · · · , λn)

∂λi
= h′

fθ
(1−

n∑
j=2

λj)xk +

n∑
j=2

λjrx,j

 f ′θ

(1−
n∑
j=2

λj)xk +

n∑
j=2

λjrx,j

 (rx,i − xk)

− ykf ′θ

(1−
n∑
j=2

λj)xk +

n∑
j=2

λjrx,j

 (rx,i − xk)

Therefore, we have
∂ϕk(λ2, · · · , λn)

∂λi

∣∣∣
(λ2,··· ,λn)=~0

= (h′(fθ(xk))− yi)∇fθ(xk)T (rx,i − xk). (23)

Finally, we calculate∇2ϕi(~0)T by

∂2ϕk(λ2, · · · , λn)

∂λi∂λs
=

∂

∂λs

(
h′
(
fθ

(
(1−

n∑
j=2

λj)xk +

n∑
j=2

λjrx,j

))
f ′θ

(
(1−

n∑
j=2

λj)xk +

n∑
j=2

λjrx,j

)
(rx,i − xk)

− ykf ′θ

(
(1−

n∑
j=2

λj)xk +

n∑
j=2

λjrx,j

)
(rx,i − xk)

)

= h′′
(
fθ

(
(1−

n∑
j=2

λj)xk +
n∑
j=2

λjrx,j

))[
f ′θ

(
(1−

n∑
j=2

λj)xk +

n∑
j=2

λjrx,j

)
(rx,i − xk)

]
[
f ′θ

(
(1−

n∑
j=2

λj)xk +
n∑
j=2

λjrx,j

)
(rx,s − xk)

]

+ h′
(
fθ

(
(1−

n∑
j=2

λj)xk +

n∑
j=2

λjrx,j

))
(rx,i − xk)T∇2fθ

(
(1−

n∑
j=2

λj)xk +

n∑
j=2

λjrx,j

)
(rx,s − xk)

− yk(rx,i − xk)T∇2fθ

(
(1−

n∑
j=2

λj)xk +

n∑
j=2

λjrx,j

)
(rx,s − xk).
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Therefore,

∂2ϕk(λ2, · · · , λn)

∂λi∂λs

∣∣∣
(λ2,··· ,λn)=~0

= (h′′ (fθ(xk)− yk))
(
∇fθ (xk)

T
(rx,i − xk)

)(
∇fθ (xk)

T
(rx,s − xk)

)
− yk(rx,i − xk)T∇2fθ (xk) (rx,s − xk). (24)

Applying (22) - (24) to (21),

ϕk(λ2, · · · , λn) = (h(fθ(xk))− ykfθ(xk)) +

n∑
j=2

(h′(fθ(xk))− yi)∇fθ(xk)T (rx,i − xk)λj

+
1

2

n∑
i,s=2

(
(h′′ (fθ(xk)− yk))

(
∇fθ (xk)

T
(rx,i − xk)

)(
∇fθ (xk)

T
(rx,s − xk)

)
− yk(rx,i − xk)T∇2fθ (xk) (rx,s − xk)

)
λiλs + o(‖(λ2, · · · , λn)‖2). (25)

Plugging (25) to (20),

Ln-mix
m (θ) =

1

m

n∑
k=1

Eλλλ∼D̃(Λ)Erx,2,··· ,rx,n∼Dxϕk(λ2, · · · , λn)

= Lm(θ) +R1(θ),+R2(θ) +R3(θ) + Eλλλ∼D̃(Λ)[o(‖(λ2, · · · , λn)‖2)],

where

R1(θ) =
Eλλλ∼D̃Λ

[1− λ1]

m

m∑
i=1

(h′(fθ(xi))− yi)∇fθ(xi)TErx∼DX [rx − xi],

R2(θ) =
Eλλλ∼D̃Λ

[
∑m
j=2 λ

2
j ]

2m

m∑
i=1

h′′(fθ(xi))∇fθ(xi)TErx∼DX [(rx − xi)(rx − xi)T ]∇θf(xi)

+
Eλλλ∼D̃Λ

[(1− λ1)2 −
∑m
j=2 λ

2
j ]

2m

m∑
i=1

h′′(fθ(xi))∇fθ(xi)TErx∼DX [(rx − xi)]Erx∼DX [(rx − xi)T ]∇θf(xi),

R3(θ) =
Eλλλ∼D̃Λ

[
∑m
j=2 λ

2
j ]

2m

m∑
i=1

(h′(fθ(xi))− yi)Erx∼DX [(rx − xi)∇2fθ(xi)(rx − xi)T ]

+
Eλλλ∼D̃Λ

[(1− λ1)2 −
∑m
j=2 λ

2
j ]

2m

m∑
i=1

(h′(fθ(xi))− yi)Erx∼DX [(rx − xi)]∇2fθ(xi)Erx∼DX [(rx − xi)T ].

C Adversarial Robustness of MSDA

Let us scrutinize adversarial robustness in MSDA. We adopt the logistic loss, so l(θ, z) = log(1 +
exp(fθ(x))) − yfθ(x) where y ∈ {0, 1}. Define g(s) = es/(1 + es). As [75], we scrutinize the
logistic regression with fθ(x) as ReLU or leaky-ReLU network. Then, we have fθ(x) = ∇fθ(xi)ᵀxi
and∇2fθ(xi) = 0. We consider the adversarial loss with l2 attack of size ε

√
d (d is the dimension of

θ), that is, Ladv
m (θ) = 1

m

∑m
i=1 max‖δi‖2≤ε

√
d l(θ, (xi + δi, yi)).

Theorem 3. In MSDA, we suppose that fθ(x) = ∇fθ(xi)ᵀxi,∇2fθ(xi) = 0 and there exists a
constant cx > 0 that ‖xi‖2 ≤ cx

√
d for all i ∈ [m]. Then for any θ ∈ Θ, we have

L̃(MSDA)
m ≥ 1

m

m∑
i=1

l̃adv(εi
√
d, z) ≥ 1

m

m∑
i=1

l̃adv(εcut

√
d, z),

20



where εcut = cx min
(

mini | cos(∇fθ(xi), xi)|Eλ∼D̃λ [1− λ],mini Eλ∼D̃λ,Ms(M,xi)
)

and

s(M,xi) = (
√

1−M�∇f(xi))
T (
√

1−M�xi)
‖∇f(xi)‖2‖xi‖2

.

This bound appears to be fertile at first glance. However, as ‖fθ(xi)‖2 increases after train-
ing accuracy reaches 100%, the logistic loss decreases. Therefore, due to ‖fθ(xi)‖2 =
‖∇fθ(xi)ᵀxi‖2 = ‖∇fθ(xi)‖2 ‖xi‖2 cos(∇fθ(xi), xi), cos(∇fθ(xi), xi) would be larger. Fur-
thermore, under the CutMix case, since M distribution is relatively uniform, s(M,xi) will be similar
to mini | cos(∇fθ(xi), xi)|Eλ∼D̃λ [1 − λ] [75]. Moreover, empirical results support Mixup’s or
Cutmix’s adversarial robustness [55, 70, 74].

proof of Theorem 3.

Fact 1. [75] The second order Taylor approximation of Ladv
m (θ) is 1

m

∑m
i=1 l̃adv(ε

√
d, z) where fore

any η > 0, x ∈ Rd and y ∈ {0, 1},

l̃adv(η, z) = l(θ, z) + η|g(fθ(x))− y| ‖∇fθ(x)‖2 +
η2d

2
· |h′′(fθ(x))| · ‖∇fθ(x)‖22 .

We set Erx(rx) = 0 by parallel translation. We define

s(M,xi) =
(
√

1−M �∇f(xi))
T (
√

1−M � xi)
‖∇f(xi)‖2 ‖xi‖2

.

For every MSDA, we haveR1 as

R1(θ) =
Eλ(1− λ)

m

m∑
i=1

(yi − g(fθ(xi)))fθ(xi),

and since θ ∈ Θ, we have (yi − g(fθ(xi)))fθ(xi) ≥ 0. Therefore,

R1(θ) =
Eλ(1− λ)

m

m∑
i=1

|yi − g(fθ(xi))||fθ(xi)|

=
Eλ(1− λ)

m

m∑
i=1

|yi − g(fθ(xi))| ‖∇fθ(xi)‖2 ‖xi‖2 | cos(∇fθ(xi), xi)|

≥
mini ‖xi‖2 mini | cos(∇fθ(xi), xi)|Eλ(1− λ)

m

m∑
i=1

|yi − g(fθ(xi))| ‖∇fθ(xi)‖2 .

Moreover, we can eliminateR3 since∇2fθ = 0. So, we only focus onR2 term. We have

R(MSDA)
2 (θ) =

1

2m

m∑
i=1

h′′(fθ(xi))Eλ∼D̃λEM (1−M)ᵀErx∼DX (∇f(xi)� (rx − xi) (∇f(xi)� (rx − xi))ᵀ) (1−M)

≥ 1

2m

m∑
i=1

h′′(fθ(xi))Eλ∼D̃λEM (1−M)ᵀ ((∇f(xi)� xi) (∇f(xi)� xi)ᵀ) (1−M)

=
1

2m

m∑
i=1

|g(fθ(xi))(1− g(fθ(xi)))|Eλ∼D̃λEM ((
√

1−M �∇f(xi))
T (
√

1−M � xi))2

=
1

2m

m∑
i=1

|g(fθ(xi))(1− g(fθ(xi)))|Eλ∼D̃λ,Ms(M,xi)
2 ‖∇f(xi)‖22 ‖xi‖

2
2

≥
mini ‖xi‖2 mini Eλ∼D̃λ,Ms(M,xi)

2

2m

m∑
i=1

|g(fθ(xi))(1− g(fθ(xi)))| ‖∇f(xi)‖22 ,

which concludes the theorem.
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D Generalization properties of MSDA

The data-dependent MSDA regularization can be altered to the original empirical risk minimization
problem with a constrained function set. The Rademacher complexity of this constrained function
set is O(1/

√
n), which leads to the generalization properties of MSDA. We investigate two models.

The first is the GLM model, which has the loss function l(θ, z) = A(θᵀx)− yθᵀx. The second is
two-layer ReLU networks, which can be parameterized as fθ(x) = θᵀ1σ(Wx) + θ0. In this case, we
consider the mean square error (MSE) loss function (i.e., l(θ) = 1

m

∑m
i=1(yi − fθ(xi))2)

D.1 GLM Model

For GLM, using (14), since the prediction of the GLM model is invariant to the scaling of the training
data, we think the dataset D̂ = {ẑi}mi=1 with x̂i = 1 � M̄ � (M � xi + (1 −M) � rx) where
M̄ = EM . Then, the loss function is

L(MSDA)
m =

1

m
EλErxEM

m∑
i=1

l(θ, z̃i) =
1

m
Eξ

m∑
i=1

(A(x̂i
ᵀθ)− yix̂iᵀθ),

where ξ denotes the randomness of λ, rx, and M . By the second approximation of A(·), we can
express A(x̂i

ᵀθ) as

A(x̂i
ᵀθ) = A(xᵀi θ) +A′(xᵀi θ)(x̂i − xi)

ᵀθ +
1

2
A′′(xᵀi θ)θ

ᵀ(x̂i − xi)(x̂i − xi)ᵀθ
to approximate the loss function. Therefore, we have

L̃(MSDA)
m =

1

m

m∑
i=1

A(xi
ᵀθ) +

1

m
Eξ

m∑
i=1

(
A′(xᵀi θ)(x̂i − xi)

ᵀθ +
1

2
A′′(xᵀi θ)θ

ᵀ(x̂i − xi)(x̂i − xi)ᵀθ
)

=
1

m

m∑
i=1

A(xi
ᵀθ) +

1

m

m∑
i=1

(
1

2
A′′(xᵀi θ)θ

ᵀVarξ(x̂i)θ
)
, (26)

where L̃(MSDA)
m denotes the approximate loss of L(MSDA)

m since Eξrx = 0 and Eξx̂i = xi. For
calculating Varξ(x̂i), we use the law of total variance. We have

Varξ(x̃i) =

(
1

M̄

1

M̄

ᵀ)
� Varξ (M � xi + (1−M)� rx)

=

(
1

M̄

1

M̄

ᵀ)
� (E(Var (M � xi + (1−M)� rx |λ,M) + Var(E (M � xi + (1−M)� rx |λ,M))

=

(
1

M̄

1

M̄

ᵀ)
�
(
E(1−M)Σ̂X(1−M)ᵀ + xiVar(M)xᵀi )

)
=

1

λ̄2

(
E(1−M)Σ̂X(1−M)ᵀ + xiVar(M)xᵀi )

)
,

where Σ̂X = 1
m

∑m
i=1 xix

ᵀ
i with some notational ambiguity that 1

M̄
:= ~1 � M̄ . In our setting

M̄ = λ̄~1 where λ̄ = Eλ∼D̃λ [λ]. Now we think the related dual problem to the (26):

Wγ =

{
x→ θᵀx, such that θ satisfying

(ExA′′(θᵀx)) · (θᵀ (E(1−M)ΣX(1−M)ᵀ) θ + θᵀ ((xVar(M)xᵀ)) θ) ≤ γ

}
.

Here, we assume the (Ex[A′′(vᵀx)])
2 ≥ ρEx(vᵀx)2, which is called ρ-retentiveness [1, 75].

Theorem 4-(a) (Restated). Define Σ
(M)
X = E(1−M)ΣX(1−M)ᵀ. Suppose A(·) is LA Lipschitz,

and X ,Y,Θ are all bounded. There exist constants L,B > 0, such that for all θ that θᵀx ∈ Wγ ,
which is the regularization induced by MSDA, we have

L(θ) ≤ Lm(θ) + 2LLA
1√
n

(γ/ρ)1/4

(√
tr
((

Σ
(M)
X

)†
ΣX

)
+ rank(ΣX)

)
+B

√
log(1/δ)

2n
,

with probability at least 1− δ.
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Proof. Firstly, we calculate the empirical Rademacher complexity ofWγ . For n i.i.d. Rademacher
random variables ξ1, . . . , ξn, the definition of the empirical Rademacher complexity gives

Rad(Wγ , n) = Eξi sup
(ExA′′(θᵀx))·

(
θᵀΣ

(M)
X θ+θᵀ((xVar(M)xᵀ))

)
θ≤γ

1

n

n∑
i=1

ξiθ
ᵀxi

≤ Eξi sup
(ExA′′(θᵀx))·θᵀΣ

(M)
X θ≤γ

1

n

n∑
i=1

ξiθ
ᵀxi.

Due to the ρ-retentiveness, we have

Rad(Wγ , n) ≤ Eξi sup
(θᵀΣXθ)·

(
θᵀΣ

(M)
X θ

)
≤γ/ρ

1

n

n∑
i=1

ξiθ
ᵀxi

≤ Eξi

 sup
θᵀΣXθ≤

√
γ/ρ

1

n

n∑
i=1

ξiθ
ᵀxi + Eξi sup

θᵀΣ
(M)
X θ≤

√
γ/ρ

1

n

n∑
i=1

ξiθ
ᵀxi


For the first part of the RHS, define x̃i = Σ

†/2
X xi and v = Σ

1/2
X θ. Then, we have

Eξi sup
θᵀΣXθ≤

√
γ/ρ

1

n

n∑
i=1

ξiθ
ᵀxi = Eξi sup

‖v‖2≤
√
γ/ρ

1

n

n∑
i=1

ξiv
ᵀx̃i

≤ 1

n
(γ/ρ)1/4Eξi

∥∥∥∥∥
n∑
i=1

ξix̃i

∥∥∥∥∥ ≤ 1

n
(γ/ρ)1/4

√√√√Eξi

∥∥∥∥∥
n∑
i=1

ξix̃i

∥∥∥∥∥
2

=
1

n
(γ/ρ)1/4

√√√√ n∑
i=1

x̃ᵀi x̃i.

Similarly, by defining x̌i =
(

Σ
(M)
X

)†/2
xi and v =

(
Σ

(M)
X

)1/2

θ,

Eξi sup
θᵀΣ

(M)
X θ≤

√
γ/ρ

1

n

n∑
i=1

ξiθ
ᵀxi = Eξi sup

‖v‖2≤
√
γ/ρ

1

n

n∑
i=1

ξiv
ᵀx̌i

≤ 1

n
(γ/ρ)1/4Eξi

∥∥∥∥∥
n∑
i=1

ξix̌i

∥∥∥∥∥ ≤ 1

n
(γ/ρ)1/4

√√√√Eξi

∥∥∥∥∥
n∑
i=1

ξix̌i

∥∥∥∥∥
2

=
1

n
(γ/ρ)1/4

√√√√ n∑
i=1

x̌ᵀi x̌i.

Therefore,

Rad(Wγ) = E[Rad(Wγ , n)] ≤ 1

n
(γ/ρ)1/4

√√√√ n∑
i=1

Exx̃ᵀi x̃i +

√√√√ n∑
i=1

Exx̌ᵀi x̌i


≤ 1√

n
(γ/ρ)1/4

(√
tr
((

Σ
(M)
X

)†
ΣX

)
+ rank(ΣX)

)
.

The relationship between Rademacher complexity and generalization error [2] indicates Theorem 4.

D.2 Two-layer ReLU Networks

We perform MSDA on the final layer of the two-layer ReLU networks. Therefore, the setting is the
same as Appendix D.1 with covariates σ(wᵀ

j x). Due to the scaling of θ1 and θ0, we consider training
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θ1 and θ0 on the covariates 1� M̄ � (M � (σ(Wxi)− σ̄W ) + (1−M)� (σ(Wrx)− σ̄W )) where
σ̄W = 1

n

∑m
i=1 σ(Wxi). Putting GLM loss with A(·) = 1

2 (·)2, we have

L̃(MSDA)
m =

1

m

m∑
i=1

(fθ(xi)− yi)2 +
1

m

m∑
i=1

(
1

2
θᵀVarξ(σ(W (M � xi + (1−M)� rx))θ

)
(27)

where L̃(MSDA)
m denotes the approximate loss of L(MSDA)

m and

Varξ(x̃i) =
1

λ̄2

(
E(1−M)Σ̂σX(1−M)ᵀ + σ(Wxi)Var(M)σ(Wxi)

ᵀ)
)

where Σ̂σX = Varrx∼DXσ(Wrx) with some notational ambiguity that 1
M̄

:= ~1� M̄ . Now we think
of the related dual problem to the equation 27:

WNN
γ =

{
x→ fθ(x) = θᵀ1σ(Wx) + θ0, such that θ satisfying

θᵀ1 (E(1−M)ΣσX(1−M)ᵀ) θ1 + θᵀ1 (Ex (σ(Wx)Var(M)σ(Wx)ᵀ)) θ1 ≤ γ

}
,

where ΣσX = Varxσ(Wx).

Theorem 4-(b) (Restated). Define Σ
σ,(M)
X = E(1 −M)ΣσX(1 −M)ᵀ. Suppose X ,Y,Θ are

all bounded. There exists constants L,B > 0, such that for all θ that fθ(x) ∈ WNN
γ , which is the

regularization induced by Manifold MSDA, we have

L(θ) ≤ Lm(θ) + 4L

√√√√√√γ

(
rank(Σ

σ,(M)
X ) +

∥∥∥∥(Σ
σ,(M)
X

)†/2
µσ

∥∥∥∥2
)

n
+B

√
log(1/δ)

2n
,

with probability at least 1− δ.

Proof. Firstly, we calculate the empirical Rademacher complexity of WNN
γ . For the n i.i.d.

Rademacher random variables ξ1, . . . , ξn, the definition of the empirical Rademacher complexity
gives

Rad(WNN
γ , n) = Eξi sup

θᵀ1 (E(1−M)ΣσX(1−M)ᵀ)θ1+θᵀ1 (Ex(σ(Wx)Var(M)σ(Wx)ᵀ))θ1≤γ

1

n

n∑
i=1

ξiθ
ᵀ
1σ(Wxi)

≤ Eξi sup
θᵀ1 (E(1−M)ΣσX(1−M)ᵀ)θ1≤γ

1

n

n∑
i=1

ξiθ
ᵀ
1σ(Wxi)

≤ Eξi sup
θᵀ1 (E(1−M)ΣσX(1−M)ᵀ)θ1≤γ

1

n

n∑
i=1

ξiθ
ᵀ
1 (σ(Wxi)− µσ) + Eξi sup

θᵀ1 (E(1−M)ΣσX(1−M)ᵀ)θ1≤γ

1

n

n∑
i=1

ξiθ
ᵀ
1µσ,

where µσ = E[σ(Wx)]. Setting θ̃1
ᵀ

=
(

Σ
σ,(M)
X

)1/2

, same technique with the proof of Theorem
3-(a) gives

Rad(WNN
γ ) ≤ 2

√√√√√√γ

(
rank(Σ

σ,(M)
X ) +

∥∥∥∥(Σ
σ,(M)
X

)†/2
µσ

∥∥∥∥2
)

n
.

Finally, the relationship between Rademacher complexity and generalization error [2] indicates
Theorem 4.
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E Extending Chidambaram et al. [12]

Chidambaram et al. [12] gave the theoretical analysis of Mixup. We follow this paper by using
the unified framework that we used. By modifying several definitions, we get similar results with
Chidambaram et al. [12].

Here, we assume that k classes have disjoint support, i.e. X =
⋃k
i=1Xi and Xi are mutually disjoint

for i = 1, . . . , k, where Xi is the support of the ith class. We consider cross-entropy loss. We define
an associated probability measure PX . Then, LMSDA, which is the expected loss for MSDA, can be
expressed with

L(MSDA)(θ) = Ez1,z2∼XEλ∼DλEM l(θ, z̃(MSDA)
z1,z2 (λ, 1− λ)),

where l is the cross entropy function. We can express L(MSDA)(θ) =
∑k
i=1

∑k
j=1 L

(MSDA)
i,j (θ) with

i, j ∈ [k], where L(MSDA)
i,j (θ) is defined as

L(MSDA)
i,j (θ) = Ez1,z2∼XEλ∼DλEM

[
l(θ, z̃(MSDA)

z1,z2 (λ, 1− λ))I(z1 ∈ Xi, z2 ∈ Xj)
]
.

L(MSDA)
i,j (θ) is the full MSDA cross entropy loss corresponding to the mixing points from classes i

and j. The goal of standard training is to learn a classifier h ∈ arg ming∈C L(g,PX) where C is the
classifier set. Any such classifier h will satisfy h(x)i = 1 on Xi since the Xi are disjoint.

We modify some definitions in [12, Section 2.2]. We define Ai,jx,ε and Ai,jx,ε,δ as

Ai,jx,ε = {(s, t, λ,M) ∈ Xi ×Xj × [0, 1]× Rn : M � s+ (1−M)� t ∈ Bε(x)}

Ai,jx,ε,δ = {(s, t, λ,M) ∈ Xi ×Xj × [0, 1− δ]× Rn : M � s+ (1−M)� t ∈ Bε(x)}

XMSDA =

x ∈ Rn :
⋃
i,j

Ai,jx,ε has positive measure for every ε > 0


ξi,jx,ε = Ez1,z2∼XEλ∼DλEM [I(z1 ∈ Xi, z2 ∈ Xj)]

ξi,jx,ε,λ = Ez1,z2∼XEλ∼DλEM [λI(z1 ∈ Xi, z2 ∈ Xj)].

Definition E.1 ([12]). Let C∗ to be the subset of C for which every h ∈ C∗ satisfies
h(x) = limε→0 arg minθ∈[0,1] L

(MSDA)(θ)|Bε(x) for all x ∈ XMSDA when the limit exists. Here,
L(MSDA)(θ)|Bε(x) represents the MSDA loss for a constant function with value θ with the restriction
of each term in L(MSDA) to the set Ai,jx,ε

C∗ includes deep neural networks. Below lemmas and theorems can be proved with the same
technique as Chidambaram et al..
Lemma 1. Any function h ∈ arg ming∈C∗ L

(MSDA)(g,PX ,Pf ) satisfies L(MSDA)(h) ≤ L(MSDA)(g) for
any continuous g ∈ C
Theorem 6. For any point x ∈ XMSDA and ε > 0, there exists a continuous function hε satisfying

hiε(x) =
ξi,ix,ε + (

∑
j 6=i ξ

i,j
x,ε,λ + (ξj,ix,ε − ξ

j,i
x,ε,λ))∑k

q=1 ξ
q,q
x,ε +

∑
j 6=q(ξ

q,j
x,ε,λ + (ξj,qx,ε − ξj,qx,ε,λ))

,

and its limits exist when ε→ 0.

We give an assumption: for a point x ∈ XMSDA, there exists a class i that x is closest to Xi for
arbitrary MSDA expression of x, and x cannot be expressed by MSDA expression between non-i
classes. The formal assumption and its geometric intuition can be found in [12].
Theorem 7. If x satisfies the above assumption, with respect to a class i, then for every h ∈
arg ming∈C∗ LMSDA(g), we have that h classifies x as the class i and h is continuous at x.

Theorem 7 indicates that if we observe a new sample that can satisfy the above assumption with the
class i, which is also a distance up to minj d(Xi, Xj)/2 from the class i, the model trained with
MSDA will classify it as i. Therefore, Theorem 7 is closely related to the generalization properties of
MSDA. All proof of this section is identical to Chidambaram et al..
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Figure 6: Comparison of regularized partial gradients between Mixup and CutMix along the sorted
pixel indices.

Table 4: HMix performances in both scenarios of Table 1.

Mixup CutMix ∆ (CutMix - Mixup) HMix (r=0.5) HMix (r=0.75)

Scenario 1: Large crop 58.3 64.4 +6.1 61.3 (+3.0 vs. Mixup) 63.7 (+5.4 vs. Mixup)
Scenario 2: Small crop 67.7 67.0 -0.7 67.6 (+0.6 vs. CutMix) 67.2 (+0.2 vs. CutMix)

F Experimental Details

Regularized input gradients experiments (Figure 4) We investigate the amount of the regular-
ized input gradients by |∂vfθ(x)∂v+pfθ(x)| with respect to the pixel distance vector p. We then
compute the partial gradients for the validation images x, which have not been seen during training,
and normalize them to sum to 1 as

PartialGradProd(x, p) = max
v
|∂vfθ(x)∂v+pfθ(x)|

for different fθ trained by different MSDA methods. Finally, we visualize the pixel-wise maximum
values of PartialGradProd(x, p) for the validation images x in Figure 4. We train ResNet-50 [26]
models on the ImageNet-1K dataset with 64× 64 image size. We show additional visualization in
Figure 6, where the x-axis denotes the pixel indices sorted by the pixel distance ‖p‖. As shown in
Figure 4 and Figure 6, CutMix more regularizes the partial gradient products |∂vfθ(x)∂v+pfθ(x)|
for a closer p than Mixup.

CIFAR-100 experiments We follow the experimental setting of [39] and utilize [39]’s codebase2.
We train all networks for 300 epochs using the SGD optimizer with a learning rate of 0.2 and a
batch size of 100. The learning rate is decayed by a factor of 0.1 at 100 and 200 epochs. We set the
hyper-parameter α for Mixup, CutMix, and Stochastic Mixup & CutMix to 1. α for HMix and GMix
were set to 1 and 0.5, respectively. We use r = 0.5 for HMix. All the experiments in CIFAR-100
were repeated three times, and we report the average accuracy.

ImageNet-1K experiments We utilize timm3 pytorch codebase. We train ResNet-50 [26] for 300
epochs using the SGD optimizer with a learning rate of 0.1, weight decay of 2× 10−5, and batch
size of 512. We use cosine learning rate scheduling. We set the hyper-parameter α for all methods
except Mixup to 1, while Mixup has α = 0.8. We use r = 0.75 for HMix.

G Additional Experiments

HMix in the scenarios of Table 1. We conduct HMix on two scenarios in Table 1. Results are
in Table 4. We use r = 0.5 and r = 0.75 for HMix. HMix shows consistently better performance
than Mixup and CutMix for the scenarios 1 and 2, respectively, with meaningful performance gaps.
Through the results, we can empirically confirm our proposed method enjoyed the advantages of
Mixup and CutMix.

2https://github.com/snu-mllab/PuzzleMix
3https://github.com/rwightman/pytorch-image-models
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Table 5: Robustness benchmarks. Comparison of various MSDA methods on ResNet-50 architecture.

Augmentation Method ImageNet-1K ImageNet-occ ImageNet-C FGSM

Vanilla (no MDSA) 75.68 (+0.00) 55.26 (+0.00) 42.57 (+0.00) 8.55 (+0.00)
Mixup 77.78 (+2.10) 60.34 (+5.08) 51.73 (+9.16) 27.78 (+19.23)
CutMix 78.04 (+2.36) 71.51 (+16.25) 44.18 (+1.55) 33.63 (+25.08)
HMix (ours) 78.38 (+2.70) 71.13 (+15.87) 46.37 (+3.80) 34.98 (+26.44)
GMix (ours) 78.13 (+2.45) 62.76 (+7.50) 45.97 (+3.40) 31.02 (+21.47)

Table 6: Ablation study on hyper-parameters.

(a) Impact on r for HMix.

PreActRN18 CIFAR-100 acc

Vanilla (no MDSA) 76.73
Mixup (r = 0) 77.21
CutMix (r = 1.0) 78.66
HMix (r = 0.75) 79.43
HMix (r = 0.5) 79.25
HMix (r = 0.25) 78.05

(b) Impact on α for HMix.

PreActRN18 CIFAR-100 acc

Vanilla (no MDSA) 76.73
Mixup (α = 1.0) 77.21
CutMix (α = 1.0) 78.66
HMix (α = 0.5) 78.47
HMix (α = 1.0) 79.25
HMix (α = 2.0) 78.85

(c) Impact on α for GMix

PreActRN18 CIFAR-100 acc

Vanilla (no MDSA) 76.73
Mixup (α = 1.0) 77.21
CutMix (α = 1.0) 78.66
GMix (α = 0.25) 78.60
GMix (α = 0.5) 79.17
GMix (α = 0.75) 78.64
GMix (α = 1.0) 79.05

Robustness benchmarks. As observed by the previous study [13], the different choice of MSDA
methods also affects the extreme case of the test samples, e.g., distribution shifts. In this experiments,
we provide an understanding of the relationship between MSDA and various test scenarios and
through the lens of our theoretical analysis. We conduct various MSDA methods on robustness
benchmarks such as ImageNet-1K occlusion accuracy (center occluded images following [13, 70]),
ImageNet-C accuracy [28] and adversarially attacked ImageNet test accuracy by FGSM attack [22].
Results are in Table 5. We use the same experimental settings of the ImageNet classification in
Table 3. Overall results show that HMix and GMix are located in between CutMix and Mixup.

CutMix performs better than Mixup in the occlusion accuracy. Here, the local occluded areas have no
information to distinguish objects, but other local areas are informative. Hence, it is important to
capture shorter-relationship rather than global-relationship. Thus we can expect that CutMix is better
than Mixup, and not surprisingly, HMix and GMix are located in between CutMix and Mixup.

ImageNet-C style corruptions (e.g., adding Gaussian noise for the entire image) distort the local
information. In this case, the shorter-distance relationships are significantly damaged and sometimes
useless to distinguish the object, hence the longer-distance relationships are more important. Hence,
we can expect Mixup works better than CutMix in ImageNet-C. As HMix and GMix less weight
shorter-distance relationships than CutMix (but more weight than Mixup), we can observe that HMix
and GMix ImageNet-C performances are better than CutMix, but worse than Mixup.

Ablation study on hyper-parameters. We study the impacts of hyper-parameters α and r for
HMix and GMix on CIFAR-100 classification. We use the PreActResNet-18 with the same experi-
mental setting as in Table 2. Results are in Table 6. We highlight the results with our hyper-parameter
choices (r = 0.5, α = 1.0 for HMix, α = 0.5 for GMix) in the gray cells. For r, we find that
HMix with r = 0.75 performs better than r = 0.5 with a marginal gap (+0.18%p). For α, our
hyper-parameters show the best performance. Overall results confirm that HMix and GMix are not
sensitive to those hyper-parameters and consistently show better or compatible performance against
Mixup and CutMix.
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H Regularizer coefficients of HMix

Define

h(x, s) = min(x, n− s), l(x, s) = max(x− s, 0),

ajk,s =
max(min(h(j1, s)− l(k1, s), h(k1, s)− l(j1, s)), 0)max(min(h(j2, s)− l(k2, s), h(k2, s)− l(j2, s)), 0)

(n− s)2
,

(28)

os =
λn2

n2 − s2
,

v(p, s) =
(h(p1, s)− l(p1, s)) ∗ (h(p2, s)− l(p2, s))

(n− s)2
.

Note that (28) is extension of (10) by putting s = [
√

1− λn] in (28). Then, HMix with hyperparame-
ter r has regularizer coefficient aij as

s = [
√

1− λ
√
rn]

aij = o(s)(1− o(s))(v(i, s) + v(j, s)) + o(s)aij,s + (1− o(s))(1− o(s)).

We plotted this value in Figure 4 when r = 0.7.

I What MSDA can be applied in our Thereoms?

Our theorems can be applied to any MSDA method with an analogous formula, regardless of the
assumption of the shape of the mask. In this paper, we mainly focused on Mixup and CutMix because
they are the most common MSDA methods among the whole MSDA family as well as their behaviors
are distinctly different in terms of our theorem. In this section, we note several nontrivial remarks for
understanding the setup of our paper.

ResizeMix. ResizeMix [54] can be explained by our theorem if we add the assumption on the
dataset DX that DX has all resized versions of the image. ResizeMix uses the resized version of
input (i.e., one of the mixed patches is the “resized” version, not a cropped one) where the random
resize is applied to the whole dataset. In other words, ResizeMix is a special case of CutMix when
we apply a special version of random resize crop operation. Hence, if we assume a different version
of random resize crop rather than the standard version (independent of our theoretical results and
underlying assumptions), ResizeMix is equivalent to CutMix, which leads to the same theoretical
result as CutMix.

FMix. FMix [25] randomly samples the mask from the Fourier space. Since FMix is one of the
static MSDA, we can directly apply our Theorem 1-4.

SaliencyMix, PuzzleMix, and Co-Mixup. SaliencyMix [64] uses saliency map to generate new
MSDA sample. PuzzleMix [39], and Co-Mixup [38] are dynamic MSDA, where they use saliency
map and transport. These methods give a state-of-the-art performance. Theorem 1 can deal with this
problem, but hard to interpret. To be specific, the second equality of Equation (8) do not hold anymore;
it is hard to interpret the approximated loss function as an input gradient / Hessian regularizer.

StyleMix and Manifold Mixup. StyleMix [29] uses pre-trained style encoder and decoder.
StyleMix linearly mixes content and style. Manifold Mixup [65] mixes samples in the feature
level. Therefore, the theorems cannot be directly applied to StyleMix and Manifold Mixup.

AutoMix. Recently, AutoMix [45] gives state-of-the-art results. AutoMix utilized joint loss to
generate the mask M : classification loss and generation loss for training M . Therefore, the mask
depends on the mixing samples, indicating that AutoMix is a dynamic MSDA. As in previous
paragraphs, Theorem 1 holds, but it is not easy to interpret each term.
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